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Experimental phonon imaging in diamond anvils cell is demonstrated to be an adequate tool to extract the
complete set of elastic constants of single-crystalline silicon up to the ZB→�-Sn transition �10 GPa�. Contrary
to what was commonly admitted, we demonstrate that the development of the strain-energy density in terms of
strains cannot be stopped, for silicon, after the terms containing the third-order elastic constants. Nonlinear
elasticity, degree of anisotropy and pressure-induced mechanical stability of the cubic silicon structure are thus
revisited and investigated in more detail.
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I. INTRODUCTION

The determination of interatomic forces in solids with re-
spect to atomic displacements is one of the most gentle and
direct way to probe the short-range repulsive potential. Ex-
perimental study of elastic properties under high pressure has
thus become an essential part of solid-state physics, although
such measurements are still a nontrivial task. For example,
the measurement of elastic constants as a function of the
pressure �i.e., the crystal volume� can serve to derived a pre-
cise and hypothesis-free equation of state �p ,V ,T�. It is also
useful to understand structural and electronic instabilities in
solids. Last but not least, the well-known accuracy of ultra-
sonics measurements has been shown to allow the determi-
nation of both second- and higher-order elastic constants,
giving rise to the characterization of nonlinear and anhar-
monic properties of solids.

Already studied for more than fifty years through the
pressure variation in sound waves under moderated pressures
�less than 1 GPa�, the determination of nonlinear properties
has recently attracted great interest, in conjunction with the
development of nanoelectromechanical and nanoelectronic
devices. In such systems, the large surface contribution to the
total energy modifies the properties and, in particular, raises
the intrinsic nonlinear properties. In a recent paper, Ło-
puszyński and Majewski1 have shown through density-
functional theory �DFT� calculations that the knowledge of
pressure derivatives of elastic constants is a clear prerequisite
to a complete explanation of semiconductors nanostructures
properties. Tang et al.2 came to the same conclusion through
a calculation of lattice dynamics in silicon nanostructure, one
of the most interesting system for applications as sensors or
communication technologies.

Extrapolating the pioneering work of McSkimin and An-
dreatch in 1964 on the elastic properties of cubic silicon3 and
germanium4 up to 0.2 GPa, the hydrostatic pressure depen-
dence of the three independent second-order elastic constants
�SOECs� of covalent semiconductors has always been con-
sidered to be linear. Rigorously, these experimental results
only give an access to the determination of few third-order

elastic constants CIJK �TOEC� combinations, constants which
can simply be expressible in terms of SOEC pressure deriva-
tives dCIJ /dp. To determine the six independent TOEC of a
cubic crystal, one also required experiments under uniaxial
stress. However, difficulties inherent to the nonhydrostatic
technique5 are known to produce doubtful conclusions6

and/or severe disagreements between authors. Even more
conflicting are the inconsistencies between hydrostatic and
uniaxial data in a same work.7 To avoid any controversies,
we here restrict our attention to the nonlinear effects of a
single crystal of silicon under hydrostatic pressures.

Reaching higher pressure as possible is crucial since the
rather subtle contribution of high-order elastic constants is
known to increase with increasing pressure. From an experi-
mental point of view, our main goal was thus to improve our
knowledge on the elasticity of cubic silicon through a highly
accurate sonar measurement over the largest pressure domain
of observation. To follow this objective, we have used the
purpose-built technique of picosecond acoustics phonon im-
aging at high pressure. This method, described in the first
part of the paper, combines the great accuracy of ultrasonic
laser technique with the capabilities of diamond anvils cell
�DAC�. It allows the measurement of the complete set of
elastic constants up to the transition pressure �10 GPa� of a
defect-free and undoped single-crystalline silicon sample.8 In
a second part, we show that such measurements may serve as
a starting point to discuss the validity of the linear regression
hypothesis of CIJ�p�, commonly admitted. Nonlinearity and
anisotropy of the Si elastic properties as a function of pres-
sure are also discussed in terms of phase stability. This may
be used as a stringent test of accuracy �or even validity� for
state-of-the-art simulations, or even as a significant informa-
tion to improve the modeling of silicon-based nanoelectro-
mechanical and nanoelectronic devices.

II. PHONON IMAGING IN DAC: ARGUMENTS AND
PRINCIPLE

The main reason why acoustic measurements on single
crystal at high pressure are quite sparse in literature is tech-
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nical. Traditionally, the frequency of sound waves generated
by ultrasonic transducers lies typically in the megahertz
range so that any sonar-based measurements would require
millimetric sample sizes. Such high dimensions render the
piezoelectric transducer technique to only be performed
when combined with a large-volume cell.9 This, conse-
quently, limits the pressure domain. To overcome this limi-
tation, an attempt to implement acoustic gigahertz
interferometry10 with DAC has been done. This promising
method is, however, still limited in pressure due to the pres-
ence of diffraction effect or acoustic phase shifts at the
diamond-sample interface under nonhydrostatic stresses.11

The third experimental scheme is the well-known Brillouin
scattering, an optical method that can easily be adapted to
DAC,12 but which is unsuitable in the case of silicon: in
Brillouin scattering method, transparent sample can exclu-
sively be studied.

More recently, picosecond acoustics13–15 has been devel-
oped to enable highly accurate mechanical properties of
opaque materials as metal liquids,16 polycrystals,17 or single
crystal18 in DAC. In this method, the measurement is similar
to the pulse-echo ultrasonic technique �travel time determi-
nation� with the advantage of the optical methods �no con-
tact; no bonding effect�. The principle of picosecond acous-
tics in DAC, described in Refs. 16 and 18, is based on the
absorption of the light pump pulse which sets up a local
thermal stress near the surface. In the acoustic far field dif-
fraction limit �i.e., the laser illuminates the sample with a
spot size much higher than the film thickness�, only longitu-
dinal acoustic strain field is created. In order to circumvent
the “shearless” problem, we further focus our attention on
the potentiality of picosecond ultrasonics to generate and de-
tect shear waves in sample embedded in a DAC. Keynote is
to generate lateral compressive stresses �producing internal
diffraction� through a minimization of the source area with
respect to the characteristic acoustic wavelength.

Original development of acoustics using small source and
point detector have revealed some striking properties of
phonons in anisotropic materials, such as phonon-focusing
effect.19 In crystals, the direction of acoustic energy flow
does generally not coincide with the wave-vector direction k.
Consequently, a source producing an uniform angular distri-
bution of k will generate an anisotropic propagation of elas-
tic energy. Considering a crystal with plane parallel surfaces,
a point acoustic source at one surface will produce nonuni-
form focusing pattern at the opposite face. This produces
patterns related to the complex topology of the group-
velocity surface �also called wave surface�. Such intriguing
imaging can, however, be calculated from elastic theory
�within the continuum model� taking into account the rela-
tion between directions of k �or phase velocity v=��k� /k�
and directions of energy flow �or group velocity ve

=���k� /�k�. Experimentally, the earlier images of flux en-
ergy pattern, obtained in heat-pulse experiments,20 have
shown that a massive amount of data may be extracted from
successively recording acoustic wave-front snapshots at dif-
ferent times. In recent years, the technique of picosecond
laser acoustics has been shown to be well suited for such
purpose: femtosecond duration of the laser pulse and the pos-
sibility to focalize the beams onto the surface plane of the

sample give rise to an outstanding resolution in space and
time. In particular, the measurements of group velocities us-
ing picosecond acoustics has been shown to allow the deter-
mination of the complete set of elastic constants of aniso-
tropic sample at ambient pressure and high temperature.21

Following this approach and taking into account the consid-
erable progress made the last five years in ultrafast
acoustics,22 we have here implemented the wave-front imag-
ing method in the case of picosecond acoustics in DAC.

III. EXPERIMENTAL SETUP

Ultrashort pulses of 100 fs are generated every 12.6 ns by
a Ti:Sapphire laser �800 nm�. The laser beam is split into
pump and probe beams. The pump is focused on one surface
of the sample whereas the probe is focused on the opposite
one. As soon as the pump laser pulse reaches the surface, it
creates a sudden and small temperature rise �of about 1 K�.
The corresponding thermal stress generated by thermal ex-
pansion relaxes by launching acoustic strain fields. After
propagation along the sample, both thermal and acoustic ef-
fects alter the optical reflectivity of the sample in two ways:
the photoelastic effect and the surface displacement �as the
acoustic echo reaches the surface�. The first modification
contributes to the change in both real and imaginary parts of
the reflectance whereas the second one only modifies the
imaginary contribution. In a pure thermoelastic model, the
time and space reflectivity change �r�t� can be represented
as a function of the photoelastic coefficient �n /�z and the
surface displacement u0�t� as

�r�t�
r0

= ik0�2u0�t� +
�n

�z

4n

1 − n2�
0

+�

��z,t�e2ik0nzdz� , �1�

where n is the optical index of the sample.
The variation in reflectivity as a function of time is de-

tected through the intensity modification of the probe de-
layed from the pump with a different optical path length. The
uncertainty on the absolute position of the delay line being
less than 1 �m, the determination of the pump/probe time
delay is better than 20 fs. The detection is carried out by a
stabilized Michelson interferometer which allows the deter-
mination of the reflectivity imaginary part change.23 Micro-
scope objectives are here necessary in order to focus both
pump and probe beams down to 3 �m �objectives with a
typical working distance of about 20 mm and an optical ap-
erture of 0.42, well adapted to the DAC environment, have
been used�. Finally, an image is obtained by scanning the
reflectivity of the whole sample surface through the displace-
ment of the probe objective in the plane perpendicular to the
beam using a X-Y piezoelectric stage �giving rise to images
of 100�100 �m2 with an accuracy on the absolute position
better than 1 �m�. We emphasize that, albeit the experimen-
tal setup is similar as the one used in a sonar configuration
�see Ref. 18�, the surface displacement of the sample is here
determined by scanning the surface at fixed pump-probe de-
lay �i.e., at a given time along the acoustic propagation�.

Extracted from a large single crystal of silicon, a thin
platelet oriented along �100� with surface of about 70
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�70 �m2 was mechanically polished. A thin film �50 nm�
of Al was sputtered on both sides to serve as transducers.
This sample was loaded into the experimental volume of the
DAC. Neon was used as pressure-transmitting medium.24

Using the well-known longitudinal velocity of Si along the
�100� direction at ambient conditions,3 the thickness of the
crystal platelet was measured to be 42.2�1� �m from pico-
second measurement in the classical configuration �i.e., scan-
ning the delay at fixed pump-probe relative position�. Pres-
sure was classically measured using the fluorescence
emission of a 5 �m ruby sphere25 placed close to the sample
in the gasket hole. The accuracy was better than 0.1 GPa at
the maximum pressure reached.

IV. RESULTS AND DISCUSSION

A. Elasticity at ambient conditions

Using the density 	=2.331 g cm−3 and a set of initial
elastic constants values, the simulated slices of the wave sur-
face in the �100� plane for silicon at ambient conditions are
obtained in two steps. First, the Christoffel equation is solved
for a set of wave vectors k lying within 45° �cubic symme-
try� around the �100� crystallographic direction. The slow-
ness curves are then generated for the three acoustical polar-
izations and, in a second step, used to calculate from ray
theory26 the wave-front curves within a surface cut in the
plane �100�. In Fig. 1, a typical three-dimensional �3D� pho-
non imaging pattern for the three acoustic polarizations is
given.

The experimental and calculated intercepts between 3D
wave front and �100� plane of silicon at ambient conditions
is shown in Fig. 2. The simulated process of the wave sur-
faces, where the elastic constants are the fitting parameters,
well reproduces the experimental pattern and gives rise to an
elastic tensor in very good agreement with previously pub-
lished data.3 We here emphasize that, for a given thermody-
namical condition �here ambient�, different patterns observed
for different pump-probe delays can be used to renew the
fitting process in order to determine the complete set of elas-
tic constants with a higher accuracy.

Note that the fast transversal mode was not experimen-
tally detectable and thus not been taken into account in the
elastic constants fitting process. The absence of this mode
�polarized into the �100� plane� can be easily understood us-

ing Eq. �1�, where the imaginary part is mainly dominated by
the surface displacement perpendicular to the surface. Con-
sequently, using our interferometric configuration, any sur-
face displacement could be detected except when it is per-
pendicular to the surface. A calculation of a �100� projection
of polarization vectors, shown in Fig. 3, illustrates the ab-
sence of the fast transversal mode for which the correspond-
ing displacement is almost zero.

B. Nonlinearity and anisotropy at high pressure

At high pressure, a step forward of the previous section,
typical experimental and calculated slices of the wave sur-
face in the �100� plane are given in Fig. 4. Taking into ac-
count the pressure dependence of the density, we have here
used a classical procedure to determine the thickness of the
crystal plate at each pressure. The basic idea can be briefly
described as follows. Assuming that length and density are

FIG. 1. �Color online� Calculated group-velocity surfaces near
the �100� symmetry axis of ZB-cubic silicon for a time delay of 3.5
ns. Red, blue, and green dashed lines correspond, respectively, to
the longitudinal, fast, and slow transversal group velocities.

FIG. 2. �Color online� Experimental phonon imaging pattern in
the �100� plane of silicon at ambient conditions �pump-probe delay
time of 0.4 ns�. Red, blue, and green dashed lines correspond, re-
spectively, to the longitudinal, fast, and slow transversal group ve-
locities using C11=165.7 GPa, C12=63.9 GPa, and C44

=79.5 GPa.

FIG. 3. �Color online� Calculation of polarization vectors
�eigenvectors of the Christoffel equation� projected along the �100�
direction, perpendicular to the surface where the probe is focused.
Pump-probe delay time is 3.5 ns. Red, blue, and green dashed lines
correspond, respectively, to the longitudinal, fast, and slow trans-
versal polarization.
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known at a given pressure p �ambient pressure, for example�,
all velocities and elastic moduli can be directly deduced from
the picosecond measurements. Using p values of density and
thickness, and p+�p wave-front snapshots for different
pump-probe delays, the length and the density of the sample
at p+�p can be computed. These values are then used to
deduce a first approximation of the elastic moduli at the new
pressure p+�p. The values of the latter are finally used as
starting points in an iterative process, until convergence is
reached. This process is quite robust since the variation in
the sound velocity is mainly due to that of the elastic moduli
�i.e., its dependence on length and density is only of second
order�.

Figures 5 show elastic constants of cubic diamond �ZB�
silicon as a function of pressure up to the ZB→�-Sn transi-
tion �10 GPa�. An excellent agreement is observed with com-
putations results using DFT-local-density approximation
�LDA� total-energy method.28 The comparison is also very
good with tight-binding simulations,27 except for C44 which
calculated ambient pressure value is far from the well-
established value of 80 GPa.29 Whereas this discrepancy may
be due to an inadequate model parametrization, a good
agreement between theoretical and experimental pressure de-
rivatives of C44 is nevertheless observed. Present data and
1960s ultrasonics results3 are also in excellent agreement �in
the pressure domain where the comparison can be done, say,
less than 0.2 GPa�. In this pressure range, the infinitesimal
strain theory does not hold anymore and, within the accuracy
of the measurements, second-order moduli CIJ are observed
to vary linearly with pressure. However, a comparison be-

tween our data at higher pressure �typically more than 3
GPa� and a linear extrapolation of the McSkimin3 results is
worse. Beyond the classical quasiharmonic approximation,

FIG. 4. �Color online� Top: experimental phonon imaging pat-
terns in the �100� plane of silicon at 7.75 GPa at two different
pump-probe delays. Bottom: same as top with superimposed calcu-
lation curves for longitudinal, fast, and slow transversal group ve-
locities �red, blue, and green dashed lines, respectively� using C11

=196.9 GPa, C12=104 GPa, and C44=80 GPa.

(a)

(b)

(c)

FIG. 5. �Color online� Pressure dependence of cubic silicon
elastic constants C11 �up�, C44 �middle�, and C12 �down� at 300 K.
The data for C11 corresponds to experiment of phonon imaging
�open circles� completed by an experiment in a classical high-
pressure picosecond setup �Ref. 18�. Present results �with uncer-
tainty given by the symbol size� are compared with previous data
�blue solid line: tight-binding DFT calculations �Ref. 27�, green
solid line: LDA-DFT calculations �Ref. 28�, and dot black line:
extrapolation of low-pressure ultrasonics data �Ref. 3��. The red
solid line corresponds to a second-order polynomial fitting of the
phonon imaging data.
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the pressure dependence of the third-order moduli CIJK of
silicon is here needed to interpret such disagreement. A
second-order polynomial regression of present data yields to
�data in gigapascal�

C11�p� = 165.7 + 4.73p − 0.09p2,

C12�p� = 63.60 + 5.78p − 0.12p2,

C44 is, however, unaffected by a variation in pressure,
lying around 80 GPa within the experimental uncertainty.

Consequently, the pressure change in three independent
relations for CIJK �here labeled Ei�p�� is calculated30 to be
�data in gigapascal�

E1�p� = C111 + 2C112 = − 1860 + 28p ,

E2�p� = 2C112 + C123 = − 1120 + 31p ,

E3�p� = C144 + 2C166 = − 747.

A good agreement is observed �see Table I� between the
zero-pressure values Ei�0� with previously published data.

Whereas an evaluation of any of the six independent CIJK
specifically is beyond the capability of elastic measurements
under hydrostatic pressure, present results clearly point out
the contribution of the fourth-order elastic constants �FO-
ECs� CIJKL. In qualitative agreement with our present obser-
vation, Prasad and Suryanarayana33 have evaluated C1111 to
lie around 12 TPa, high value which entails the FOEC con-
tribution to be substantial at high pressure. This clearly dem-
onstrates the need to account for high-order elastic constants
in the study of the anharmonic properties of silicon, of most
importance for simulations �test of validity for explicit crys-
tal potential� or for applied physics �harmonics generation
and distortion effects� as sound waves propagating in silicon-
based devices.

As well as nonlinearity, elastic anisotropy is also known
to shed light on the mechanical properties of solids as dislo-
cation dynamics, plastic deformations, or structural stability.
For cubic symmetry as silicon, the 1930s Zener34 definition
of the acoustical anisotropy A=2C44 / �C11−C12� has been re-
cently revisited35 in order to quantify the single-crystal elas-
tic anisotropy from an universal point of view AU=6 /5��A
−1 /�A�2 �note that for an isotropic crystal, A=1 but AU=0�.
As illustrated in Fig. 6, the degree of elastic anisotropy of
silicon is increasing with increasing pressure. This result
well agrees with ab initio calculations27,28 and could be re-
lated to the observation that the transverse phonon frequency

�i.e., the Grüneisen parameter� has been found to be the
unique mode that decreases with pressure.36

C. Equation of state and structural stability

For cubic crystals, the bulk modulus B is a simple func-
tion of the elastic constants

B = �C11 + 2C12�/3.

Using the experimental values of CIJ�p�, highly accurate
and free-hypothesis equation of state B�p� has been deter-
mined �see Fig. 7�.

A second-order polynomial curve well reproduces the ex-
perimental pressure dependence of the bulk modulus with

TABLE I. Comparison of experimental �exp� and calculated
�calc� relations Ei for CIJK �in GPa� of silicon at ambient conditions.

Reference E1�0� E2�0� E3�0�

Present results �exp� −1860 −1120 −747

Reference 3 �exp� −1729 −997 −610

Reference 31 �exp� −1854 −1064 −687

Reference 1 �calc� −1600 −1014 −580

Reference 32 �calc� −1710 −960 −580

FIG. 6. �Color online� Universal elastic anisotropy factor AU of
ZB silicon as a function of the pressure �open circles� compared
with previous data �blue solid line: tight-binding DFT calculations
�Ref. 27�, green solid line: LDA-DFT calculations �Ref. 28�, and
dot black line: extrapolation of low-pressure ultrasonics data �Ref.
3��.

FIG. 7. �Color online� Pressure dependence of bulk moduli in
single-crystalline ZB silicon. The uncertainties in pressure and bulk
modulus are within the symbol size. Present data are compared with
previously published results �blue solid line: tight-binding DFT cal-
culations �Ref. 27�, green solid line: LDA-DFT calculations �Ref.
28�, and dot black line: extrapolation of low-pressure ultrasonics
data �Ref. 3��.
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B�p� = 97.60 + 5.74p − 0.16p2.

This result in excellent agreement with a fourth-order regres-
sion of the elastic energy with respect to the strain giving

B� = dB/dp = − �E1 + 2E2�/�9B� = 5.08 − 0.24p .

Lattice stability and sequence of phase transformations in
semiconductors can be understood in the framework of
phonons instabilities,37 which for purely covalent com-
pounds as silicon can be expressed in terms of mechanical
stability of the stressed lattice. In a cubic crystal, the condi-
tion of a positive density of elastic energy transforms to the
following criteria:

B1 = C11 + 2C12 
 0,

B2 = C11 − C12 
 0,

B3 = C44 
 0.

B1 is directly connected to the bulk modulus and does not
allow to discuss the phase stability in terms of symmetry
change from cubic �ZB� to tetragonal ��-Sn�. However, B2
and B3 are referred to bulk shear and tetragonal shear
moduli, respectively.

Theoretical studies of ZB structural stability of silicon
have been undertaken through DFT �Ref. 28� and molecular-
dynamics simulations.36 In both works, the determination of
the vibrational distortions at high pressure gives a critical
pressure �quite higher than the physical transition one� at
which the ideal lattice become unstable against homoge-
neous tetragonal shear deformation, say, B2. In our case, an
extrapolation of experimental results can only attempted for
B2 since the pressure dependence of C44 was not enough
accurate to be decently interpolate by other than a constant
value. As can be seen in Fig. 8, the violation of B2 occurs at
around 120 GPa, in good agreement with theoretical calcu-
lations.

This result can be interpreted as the following: silicon, as
mainly other tetrahedrally bonded semiconductors,38 is
mainly stabilized by noncentral covalent interactions. From
that point of view, the ZB→�-Sn path transition has intrin-
sically a martensitic nature, ideal transformation that cannot
be effectively observed due to kinetic contributions. Conse-
quently, the deformation of ZB-silicon under hydrostatic

pressure can be seen to be driven by a tetragonal shear strain
but without reaching the structural instability.

V. CONCLUSION

We have presented a detailed experimental study of elas-
tic constants of cubic ZB silicon as a function of hydrostatic
pressure. Phonon imaging in diamond anvils cell, an original
experimental purpose-built setup, allows to determine the
subtle effect of high-order elastic constants and demonstrates
the failure of the linear regression approximation dCIJ /dp
=constant. From this study, nonlinear acoustics, anisotropy,
equation of state as well as structural stability of a pure
single crystal of silicon have been extracted with an out-
standing accuracy. So far, this technique is likely to have an
impact on the study of dynamics of all single crystals at high
density.
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